NAG Toolbox for MATLAB

f07jh

1 Purpose

f07jh computes error bounds and refines the solution to a real system of linear equations AX = B, where A is an n by n symmetric positive-definite tridiagonal matrix and X and B are n by r matrices, using the modified Cholesky factorization returned by f07jd and an initial solution returned by f07je. Iterative refinement is used to reduce the backward error as much as possible.

2 Syntax

[x, ferr, berr, info] =
$$f07jh(d, e, df, ef, b, x, 'n', n, 'nrhs_p', nrhs_p)$$

3 Description

f07jh should normally be preceded by calls to f07jd and f07je. f07jd computes a modified Cholesky factorization of the matrix A as

$$A = LDL^{\mathrm{T}}$$
.

where L is a unit lower bidiagonal matrix and D is a diagonal matrix, with positive diagonal elements. f07je then utilizes the factorization to compute a solution, \hat{X} , to the required equations. Letting \hat{x} denote a column of \hat{X} , f07jh computes a *component-wise backward error*, β , the smallest relative perturbation in each element of A and B such that \hat{x} is the exact solution of a perturbed system

$$(A+E)\hat{x} = b+f$$
, with $|e_{ij}| \le \beta |a_{ij}|$, and $|f_j| \le \beta |b_j|$.

The function also estimates a bound for the *component-wise forward error* in the computed solution defined by $\max |x_i - \hat{x_i}| / \max |\hat{x_i}|$, where x is the corresponding column of the exact solution, X.

Note that the modified Cholesky factorization of A can also be expressed as

$$A = U^{\mathrm{T}}DU$$
,

where U is unit upper bidiagonal.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D 1999 *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia URL: http://www.netlib.org/lapack/lug

5 Parameters

5.1 Compulsory Input Parameters

1: $\mathbf{d}(*)$ – double array

Note: the dimension of the array **d** must be at least $max(1, \mathbf{n})$.

Must contain the n diagonal elements of the matrix of A.

2: e(*) – double array

Note: the dimension of the array **e** must be at least $max(1, \mathbf{n} - 1)$.

Must contain the (n-1) subdiagonal elements of the matrix A.

[NP3663/21] f07jh.1

f07jh NAG Toolbox Manual

3: df(*) – double array

Note: the dimension of the array **df** must be at least $max(1, \mathbf{n})$.

Must contain the n diagonal elements of the diagonal matrix D from the LDL^{T} factorization of A.

4: ef(*) – double array

Note: the dimension of the array **ef** must be at least $max(1, \mathbf{n})$.

Must contain the (n-1) subdiagonal elements of the unit bidiagonal matrix L from the LDL^{T} factorization of A.

5: b(ldb,*) - double array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs p)

The n by r matrix of right-hand sides B.

6: x(ldx,*) – double array

The first dimension of the array \mathbf{x} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs p)

The n by r initial solution matrix X.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The dimension of the array **d** The dimension of the array **df** The dimension of the array **ef**. n, the order of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

Constraint. $\mathbf{n} \geq 0$.

2: nrhs p - int32 scalar

Default: The second dimension of the array $\bf b$ The second dimension of the array $\bf x$.

r, the number of right-hand sides, i.e., the number of columns of the matrix B.

Constraint: $\mathbf{nrhs}_{\mathbf{p}} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

ldb, ldx, work

5.4 Output Parameters

1: $\mathbf{x}(\mathbf{ldx},*) - \mathbf{double} \ \mathbf{array}$

The first dimension of the array \mathbf{x} must be at least $\max(1, \mathbf{n})$

The second dimension of the array must be at least max(1, nrhs_p)

The n by r refined solution matrix X.

2: ferr(*) - double array

Note: the dimension of the array ferr must be at least $max(1, nrhs_p)$.

Estimate of the forward error bound for each computed solution vector, such that $\|\hat{x}_j - x_j\|_{\infty} / \|x_j\|_{\infty} \le \mathbf{ferr}(j)$, where \hat{x}_j is the *j*th column of the computed solution returned in the

f07jh.2 [NP3663/21]

array \mathbf{x} and x_j is the corresponding column of the exact solution X. The estimate is almost always a slight overestimate of the true error.

3: berr(*) - double array

Note: the dimension of the array **berr** must be at least $max(1, nrhs_p)$.

Estimate of the component-wise relative backward error of each computed solution vector \hat{x}_j (i.e., the smallest relative change in any element of A or B that makes \hat{x}_j an exact solution).

4: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

$$info = -i$$

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: n, 2: nrhs_p, 3: d, 4: e, 5: df, 6: ef, 7: b, 8: ldb, 9: x, 10: ldx, 11: ferr, 12: berr, 13: work, 14: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

The computed solution for a single right-hand side, \hat{x} , satisfies an equation of the form

$$(A+E)\hat{x}=b,$$

where

$$||E||_{\infty} = O(\epsilon)||A||_{\infty}$$

and ϵ is the *machine precision*. An approximate error bound for the computed solution is given by

$$\frac{\|\hat{x} - x\|_{\infty}}{\|x\|_{\infty}} \le \kappa(A) \frac{\|E\|_{\infty}}{\|A\|_{\infty}},$$

where $\kappa(A) = \|A^{-1}\|_{\infty} \|A\|_{\infty}$, the condition number of A with respect to the solution of the linear equations. See Section 4.4 of Anderson *et al.* 1999 for further details. Function f07jg can be used to compute the condition number of A.

8 Further Comments

The total number of floating-point operations required to solve the equations AX = B is proportional to nr. At most five steps of iterative refinement are performed, but usually only one or two steps are required.

The complex analogue of this function is f07jv.

9 Example

[NP3663/21] f07jh.3

f07jh NAG Toolbox Manual

```
e = [-2;
-6;
      15;
     8];
df = [4;
      9;
      25;
      16;
      1];
0.6;
      0.5;
b = [6, 10;
9, 4;
      2, 9;
2, 9;

14, 65;

7, 23];

x = [2.5, 2;

2, -0.99999999999999999;

1, -3;

-1, 6;

3, -5];

[xOut, ferr, berr, info] = f07jh(d, e, df, ef, b, x)
xOut =
    2.5000
               2.0000
               -1.0000
     2.0000
    1.0000
              -3.0000
   -1.0000
               6.0000
    3.0000 -5.0000
ferr =
    1.0e-13 *
    0.2425
    0.4663
berr =
   1.0e-16 *
       0
    0.1110
info =
             0
```

f07jh.4 (last) [NP3663/21]